STARPOWER

SEMICONDUCTOR

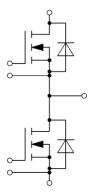
MOSFET

MD200HFR120C2S

1200V/200A 2 in one-package

General Description

STARPOWER MOSFET Power Module provides very low $R_{DS(on)}$ as well as optimized intrinsic diode. It's designed for the applications such SMPS and DC drives.


Features

- SiC power MOSFET
- Low R_{DS(on)}
- Optimized intrinsic reverse diode
- Chip sintering technology
- Low inductance case avoid oscillations
- Isolated copper baseplate using AlN DBC technology

Typical Applications

- Main and auxiliary AC drives of electric vehicles
- DC servo and robot drives
- Battery vehicles
- UPS equipment
- Plasma cutting

Equivalent Circuit Schematic

Absolute Maximum Ratings

MOSFET

Symbol	Description	Value	Unit	
$V_{ m DSS}$	Drain-Source Voltage	1200	V	
V_{GSS}	Gate-Source Voltage	-4/+22	V	
	Drain Current @ T _C =25°C	299	٨	
I_{D}	$@T_{\rm C}=105^{\circ}{\rm C}$	200	A	
I_{DM}	Pulsed Drain Current	822	A	

Inverse Diode

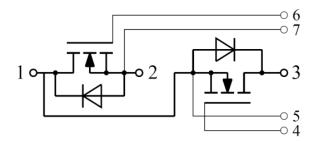
Symbol	Description	Value	Unit
I_{S}	Source Current	200	A
I_{SM}	Pulsed Source Current	822	A

Module

Symbol	Description	Value	Unit
T_{jmax}	Maximum Junction Temperature	175	°C
T _{jop}	Operating Junction Temperature	-40 to +150	°C
T_{STG}	Storage Temperature Range	-40 to +125	°C
$ m V_{ISO}$	Isolation Voltage RMS,f=50Hz,t=1min	4000	V

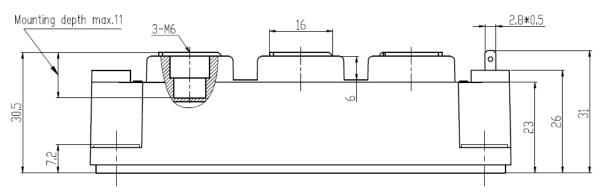
MOSFET Characteristics

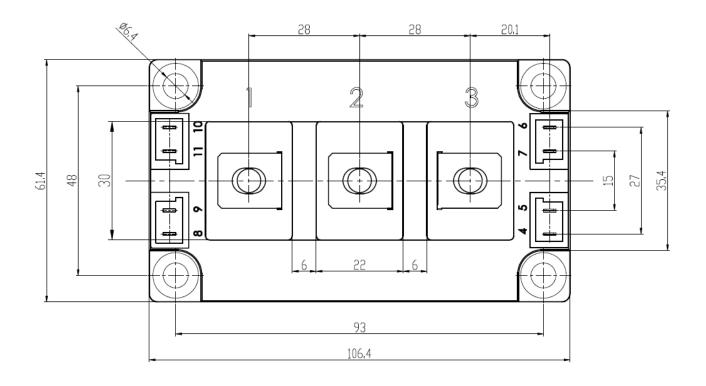
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
D	Static Drain-Source	$ \begin{array}{l} I_D = 120 A, V_{GS} = 18 V, \\ T_j = 25 ^{\circ} C \\ \hline I_D = 120 A, V_{GS} = 18 V, \\ T_i = 125 ^{\circ} C \end{array} $		6.7	8.7	0
R _{DS(on)}	On-Resistance			10.0		mΩ
$V_{\text{GS(th)}}$	Gate-Source Threshold Voltage	$I_D=60$ mA, $V_{DS}=V_{GS}$, $T_i=25$ °C	2.7		5.6	V
$g_{ m fs}$	Forward Transconductance	V _{DS} =10V,I _D =120A		49.8		S
I_{DSS}	Drain-Source Leakage Current	$V_{DS}=V_{DSS}, V_{GS}=0V,$ $T_i=25^{\circ}C$			60	μΑ
I_{GSS}	Gate-Source Leakage Current	$V_{GS}=V_{GSS}, V_{DS}=0V,$ $T_j=25^{\circ}C$			0.6	μΑ
C_{iss}	Input Capacitance	_		8.0		nF
C_{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 800V,$		0.46		nF
C_{rss}	Reverse Transfer Capacitance	f=1MHz		0.16		nF
Q_{g}	Total Gate Charge			642		пC
Q_{gs}	Gate-Source Charge	$I_D=120A, V_{DS}=600V,$		132		пC
$Q_{gd} \\$	Gate-Drain ("Miller") Charge	$V_{GS}=18V$		246		nC
$t_{d(on)}$	Turn-On Delay Time	V _{DS} =400V,I _D =108A,		21		ns
$t_{\rm r}$	Rise Time	$R_{G}=0\Omega, V_{GS}=18V,$		39		ns
$t_{d(off)}$	Turn-Off Delay Time	0 , 00 ,		49		ns
t_{f}	Fall Time	$T_j=25^{\circ}C$		24		ns
Eon	Turn-On Switching Loss	$V_{DS}=600V, I_D=120A,$		1.70		mJ
E _{off}	Turn-Off Switching Loss	$R_G=0\Omega, V_{GS}=18V,$ $T_j=25^{\circ}C$		0.71		mJ


Inverse Diode Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{SD}	Diode Forward Voltage	$I_S=120A, V_{GS}=0V, T_j=25^{\circ}C$		3.2		V
t_{rr}	Diode Reverse Recovery Time	V_R =600V, I_S =120A, -di/dt=6600A/ μ s, T_j =25°C		25		ns
Qr	Diode Reverse Recovery Charge			0.69		μС
I_{RM}	Peak Reverse Recovery Current			54		A

Module Characteristics T_C =25°C unless otherwise noted


Symbol	Parameter		Тур.	Max.	Unit
R_{thJC}	Junction-to-Case(Mosfet)			0.122	K/W
R_{thCH}	Case-to-Heatsink (Mosfet)		0.020		K/W
	Case-to-Heatsink (per Module)		0.010		K/W
M	Terminal Connection Torque, Screw M6	2.5		5.0	N.m
	Mounting Torque, Screw M6	3.0		5.0	IN.III
G	Weight of Module		300		g


Circuit Schematic

Package Dimensions

Dimensions in Millimeters

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.powersemi.cc), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.